A strategy to synergistically increase the number of active edge sites and the conductivity of MoS2 nanosheets for hydrogen evolution.

نویسندگان

  • Hailong Yu
  • Xianbo Yu
  • Yujin Chen
  • Shen Zhang
  • Peng Gao
  • Chunyan Li
چکیده

Nanostructured MoS2 is very promising as an electrocatalyst for hydrogen evolution due to a greater number of active edge sites. However, a very large resistance between basal planes decreases the overall efficiency of hydrogen evolution, and greatly limits its application in industry. Herein we develop a facile strategy to synergistically increase the number of active edge sites and the conductivity of MoS2. MoS2 nanosheet arrays can be grown vertically on a carbon fiber cloth (CFC) substrates by a facile strategy. On the one hand, ammonium fluoride in the reaction system could effectively etch the inert basal plane of the MoS2 nanosheets, leading to the formation of pits in the inert basal plane of the MoS2 nanosheets. Thereby the number of active edge sites is significantly increased. On the other hand, the vertical growth of MoS2 nanosheet arrays on CFCs can significantly decrease the resistance of MoS2-based electrocatalysts. As a result, the MoS2-based electrocatalysts exhibit excellent catalytic activity for hydrogen evolution reactions, with a small Tafel slope and a large cathodic current density. Moreover, the CFC can be repeatedly utilized as a template to grow ultrathin MoS2 nanosheet arrays for HERs. The excellent activity and recyclable utilization, as well as mass production, indicate that the composite has promising applications in industry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction.

We report chemically exfoliated MoS2 nanosheets with a very high concentration of metallic 1T phase using a solvent free intercalation method. After removing the excess of negative charges from the surface of the nanosheets, highly conducting 1T phase MoS2 nanosheets exhibit excellent catalytic activity toward the evolution of hydrogen with a notably low Tafel slope of 40 mV/dec. By partially o...

متن کامل

Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution

Highly active and stable MoS2/carbon hierarchical spheres with abundant active edge sites were fabricated by a simple micro-emulsion procedure where PVP was used as the carbon source, and carbon disulfide as the sulfur source and oil phase in micro-emulsion to control the morphology of MoS2. Hierarchical spheres of MoS2/carbon with a diameter of ca. 500 nm were obtained and characterized by sca...

متن کامل

Three-dimensional hierarchical frameworks based on MoS₂ nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution.

Advanced materials for electrocatalytic water splitting are central to renewable energy research. In this work, three-dimensional (3D) hierarchical frameworks based on the self-assembly of MoS2 nanosheets on graphene oxide were produced via a simple one-step hydrothermal process. The structures of the resulting 3D frameworks were characterized by using a variety of microscopic and spectroscopic...

متن کامل

Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts.

The identification of the active sites in heterogeneous catalysis requires a combination of surface sensitive methods and reactivity studies. We determined the active site for hydrogen evolution, a reaction catalyzed by precious metals, on nanoparticulate molybdenum disulfide (MoS2) by atomically resolving the surface of this catalyst before measuring electrochemical activity in solution. By pr...

متن کامل

Enhancement of the Hydrogen Evolution Reaction from Ni-MoS2 Hybrid Nanoclusters

This report focuses on a novel strategy for the preparation of transition metal-MoS2 hybrid nanoclusters based on a one-step, dual-target magnetron sputtering, and gas condensation process demonstrated for Ni-MoS2. Aberration-corrected STEM images coupled with EDX analysis confirms the presence of Ni and MoS2 in the hybrid nanoclusters (average diameter = 5.0 nm, Mo:S ratio = 1:1.8 ± 0.1). The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 19  شماره 

صفحات  -

تاریخ انتشار 2015